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Abstract
Membrane fusion, protein folding and macromolecular assembly are a few of
the many processes in which the interaction of near-neutral and semi-permeable
fluid surfaces plays an important role. The electrostatic force between
membranes is solved from Coulomb’s law by first casting the expression for
charge by way of the Fredholm integral equation, and then integrating the
effect of the charge distribution to obtain the expression for force. The surface
charge density is conveniently described by a Langevin type expression which
suggests a saturation type behaviour describing a transition from ‘soft’ to ‘hard’
sphere where increasing electrolyte strength and particle size modify the pair-
interaction force.

PACS numbers: 41.20.Cv, 05.70.-a, 71.10.Li, 82.70.Dd

1. Introduction

Amphiphilic molecules, such as surfactants, lipids and proteins form a variety of extended,
noncovalent structures that include micelles, vesicles and the fundamental bilayers of the
membranes of cells [1, 2]. One of the natural consequences of the self-assembled structures
made out of amphiphilic molecules is the construction of a semipermeable barrier that
exhibits many of the attributes of a cell membrane. While membranes are often considered
stable, noninteracting structures, the dynamics of cellular processes require that membranes
interact with each other to facilitate transport and exchange of intra-cellular material. Central
to these transformations of membrane structure is the process of membrane fusion. The
pathway leading to membrane fusion has been suggested to include the following events [3]:
(i) close approach of the two membrane surfaces, (ii) destabilization of membrane bilayers and
(iii) mixing of components of bilayers and formation of new membrane structures. It is the
interaction in this first event, bringing two membranes into close proximity, that is the topic of
this contribution.
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Since we seek to describe the interaction from a mean-field perspective we must first
discuss some properties of self-assembled structures made out of amphiphilic molecules
relevant to the electrostatic force. In the context of this contribution, only a limited overview
can be given of those aspects of membrane structure and composition that have bearing on
the selection of boundary conditions for the interaction force model. Amphiphilic molecules
have a hydrophobic portion (the hydrocarbon chain) and a hydrophilic portion (the polar
headgroup), which determines what charge the amphiphile as a whole may carry. Bilayers
with exposed headgroups thus exhibit a positive, negative or overall neutral charge depending
on the chemical structure of the headgroup and pH. Charge may also be modified by electrolyte
composition and strength and thus regulates the magnitude of the interaction forces between
membranes [4–7].

Membrane integrity also plays an important role modifying the electrical properties. As
the membranes become more stressed with increasing temperature more of the hydrocarbon
interiors are exposed to the aqueous phase, resulting in a characteristic increase in range and
magnitude of the attractive force [8]. Passive diffusion is believed to occur via molecular scale
discontinuities (kinks that hydrocarbon chains form under the influence of thermal motion)
in the bilayer [3]. Even though it is energetically unfavourable for polar solutes to inhabit
the hydrophobic interior of the membrane due to the hydrophobic effect passive transport of
charged ions is still observed [9]. For example, measured permeability rates for transport of
monovalent ions across unilamellar vesicles range between 2 × 10−5 and 3 × 10−6 s−1 [10].
The important consequence of thermally induced local discontinuities is that membranes are
more or less permeable to both polar and non-polar solutes despite barriers to transport.

Recent vibrational studies of water at the hydrophobic surface suggest that dipolar
interactions between interfacial molecules and the polarizable organic phase play an important
role in the interfacial region, resulting in strong orientation effects [11]. The orientation of
these water molecules that interact with the hydrocarbon phase is due to weakly bonded water
molecules that straddle the interface and make up the majority of the water molecules in
the interfacial region and not to a strengthening of the hydrogen-bonding network between
water molecules in the bulk [11]. These observations are consistent with molecular simulation
studies [12]. Importantly, the orientation of these water molecules that interact with the organic
phase creates an icelike structure at the hydrocarbon interface, which suggests that proton
conductivity and mobility is higher in the hydrophobic zone than in bulk water [13]. From
a molecular point of view important implications include mechanisms for charge transport
across the hydrophobic barrier as well as charge transport tangentially along the polarizable
hydrocarbon interface.

Given the experimental and theoretical evidence for water and solute penetration, water
structure and polarizability in the interfacial region of hydrophobic surfaces it appears possible
to cast an expression for the interaction between membrane surfaces in terms of the screened
Coulomb force and appropriate boundary conditions. It should be noted, however, that in
doing so we neglect the molecular-scale complexity with all its heterogeneities to obtain a
mean-field approximation of the interaction force.

2. Model development

The model surfaces considered here are self-assembled structures of amphiphilic molecules
that form semi-permeable membranes [3, 14]. Typical examples of such structures are
micelles and vesicles, which usually are spheres or spherelike particles, and self-assembled
amphiphilic molecules that have been deposited onto a substrate for the purpose of experimental
investigation of the interaction force [5,7,15]. Many amphiphiles are non-ionic or zwitterionic
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and often display only weak surface potentials; either due to screening by the hydrocarbon
chains and/or because of selective ion-binding effects [2,16,17]. Hence, the linearized form of
the Poisson–Boltzmann equation is applicable for the near electro-neutral membrane surfaces
under investigation.

The linearized Poisson–Boltzmann equation governing the distribution of potentialψ both
inside and outside the semi-permeable membrane assumes the form

∇2ψ = κ2ψ (inside and outside) (1)

(which mathematically speaking is valid only for non-constant or zero surface potentials),
where the electrolyte is defined by its bulk screening constant κ . Experimentally, the
exponential form of the screening can be justified from the asymptotic behaviour of measured
interaction forces [18].

To complete the boundary value problem expressed in equation (1), one must specify the
boundary conditions at all interfaces involved. The field potential at any point is obtained from
Gauss’s definition of potential [19]:

ψ(�x) = K

[ ∫
dQ1 (�x1)

e−κ|�x−�x1|

|�x − �x1| +
∫

dQ2 (�x2)
e−κ|�x−�x2|

|�x − �x2|
]

(2)

where the potential at �x ≡ (x, y, z) is the sum of the contributions from the charged particles,
and K is 1/4πε, where ε is the dielectric permittivity of the solvent. Equation (2) is valid at
all points except when |�x − �xi | ≡ 0, i = 1 for P1 and i = 2 for P2, where the endpoints of the
two vectors coincide on the particle surfaces.

Suppose membrane surfaces are raised to a constant potential, V1 and V2 volts, taken as
relative to ground the surface potentials for P1 and P2 are

V1 = K

[ ∫
dQ1

e−κR1

R1
+
∫

dQ2
e−κR2

R2

]

V2 = K

[ ∫
dQ1

e−κR′
1

R′
1

+
∫

dQ2
e−κR′

2

R′
2

] (3)

where Qi are point charges and Ri and R′
i are directional vector quantities (figure 1). We note

that for a given surface potential and surface-to-surface separation distance the magnitude
and location of surface charges are uniquely determined by equation (3). The magnitude and
location of charges are obtained self-consistently by way of the Fredholm integral equation [20],
where the details of the derivation are found in appendix A.

The effect of the known charge distribution is then integrated to obtain the electrostatic
force. Coulomb’s law [21] for point charges is readily generalized to account for the screened
electrostatic force due to an ensemble of charges residing on two macroscopic surfaces. Recent
calibration experiments designed to evaluate Coulomb’s law for macroscopic particles held at
constant potential revealed an exact (within experimental error) agreement between theory and
force measurements [22]. We consider the electrostatic force between two spherical membrane
surfaces P1 and P2 with radii a1 and a2, respectively, immersed in a solvent E. Accordingly,
the screened Coulomb force [21] on particle P1 is then solely due to particle P2, and is given
by

�F = K

∫
dQ1 ( �X1)(−�∇ �X1

)

∫
dQ2 (�x2)

e−κ| �X1−�x2|

| �X1 − �x2|
(4)

where �X1 ≡ (X1, Y1, Z1) and �x2 ≡ (x2, y2, z2) are points on P1 and P2, respectively. The
first integral accounts for all charges residing on P1 by summing over all charges Q1 located
at �X1. The potential is obtained by summing over all charges residing on P2, Q2, located at �x2



2162 A V M Khachatourian and A O Wistrom

Figure 1. Schematic representation of two semi-permeable particles each having a uniform
distribution of potential immersed in a screening solvent E. Potentials, charge densities and the
radii on the top and bottom spheres are denoted V1, σ1, a1 and V2, σ2, a2, respectively.

and scaled by the inverse of the separation distance, | �X1 − �x2|, multiplied by an exponential
‘screening’ factor e−κ| �X1−�x2|.

For a spherical coordinate system equation (4) can be written in terms of Legendre
polynomials, P�(x) and modified Bessel functions

�F = ẑKa2
1a

2
2(2π)

2κ2
∞∑
m=0

Im+1/2(κa2)√
κa2

∫ π

0
sin θ2 dθ2 σ2(θ2)Pm(cos θ2)

×
∫ π

0
dβ sin βσ1(β)

[
(m + 1)Pm+1(cosα)

Km+3/2(κr)√
κr

+mPm−1(cosα)
Km−1/2(κr)√

κr

]
(5)

where contact is avoided by stipulating that h > a1 +a2 and h is defined as the centre-to-centre
separation distance between two particles of radii a1 and a2. In light of the constant potential
boundary condition, equations (5), (A.1) can be written as

�F = −ẑKa2
2(2π)

2
∫ 1

−1
dx x

[
κV2

4πK

(
coth κa2 − 1

κa2

)
− σ2(x)

]2

= −ẑKa2
2(2π)

2
∫ 1

−1
dx x["2(x)]

2 (6)

which is the sought after expression for the screened Coulomb force. We note that equation (6)
can be viewed as a Maxwell–Lorentz type force:

�F = 1
2ε

∫
d �S ( �E · Ŝ)2

when the electric field, �E, on the particle surface is identified as �Ei = −�∇ψi . As a check
on the validity of the above expression we note that asymptotically, for h � a1 + a2, σ1 and
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σ2 reduce to a uniform charge distribution on P1 and P2, respectively, such that equation (5)
reduces to

�F = ẑKQ1Q2

(
sinh κa1

κa1

)(
sinh κa2

κa2

)(
e−κh

h

)(
κ +

1

h

)
. (7)

Equation (7) can also be viewed as the screened electrostatic force between two charged
particles with constant surface charge densities σ1 and σ2, which in the limit κ → 0 reduces to

�F = ẑK
Q1Q2

h2
. (8)

In classical colloid theory the surface potential is related through the thermodynamic
relationships governing the concentration and adsorbability of ions dissolved in the
solvent [23]. In the following, only the interaction between particles at the constant potential
limit will be discussed, leaving the constant charge limit, which represents the other extreme
of a particle system’s behaviour, for subsequent analysis [24, 25].

3. Discussion

Experimentally, the composition inside and outside the membrane surface can be assumed to
be the same. This is often the case for model membrane systems such as liposomes, vesicles
and deposited membranes used for transport studies and fusion experiments [3]. The boundary
conditions that correspond to a semi-permeable and polarizable surface yield an expression
for surface charge that differs from the classical result [24–27]. The surface charge densities
are obtained self-consistently from equation (3), where the details of the evaluation are found
in appendix B.

The surface charges on P1 and P2 are

"1(β) = − 1

4πK

∂ψ

∂r1

∣∣∣∣
r1=a1

= σ1(β)− κV1

4πK

(
coth (κa1)− 1

κa1

)
(9)

and

"2(α) = − 1

4πK

∂ψ

∂r2

∣∣∣∣
r2=a2

= σ2(α)− κV2

4πK

(
coth (κa2)− 1

κa2

)
. (10)

Charge saturation is conveniently described by a Langevin type expression obtained from
equation (9) or (10):

− "1

εκV1
= coth (κa1)− 1

κa1
(11)

where the Langevin function measures the ratio of the actual charge to its maximum value.
Notably, the magnitude and distribution of surface charge are regulated by particle size, a, and
by the solvent through the Debye length, κ−1. One deduces that the charge decreases with
increasing κ , a phenomenon also noted for a charged particle in isolation [28]. In figure 2 the
surface charge is plotted as a function of polar angle θ for the case of two particles of equal
size and constant potential in close proximity. The surface charge distribution is obtained
self-consistently from equations (A.8) and (A.9) (appendix A) using matrix inversion. For the
case of a polarizable surface held at constant potential a charge density depletion is observed
at the point of closest approach (small θ ), which gives rise to a nonlinear behaviour of the
surface charge distribution. Surface elements further away from the point of contact (large θ )
are not affected by the presence of the second particle and remain ‘hard’. The transition
between ‘soft’ and ‘hard’ moves closer to the point of contact with increasing κ , which
suggests that a saturation effect comes into play. According to equation (9) the cross-over
from ‘soft’ to ‘hard’ is gradual and finally saturates when κa → ∞. At infinite separation
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Figure 2. Charge density distribution for a charged particle held at constant potential as a function
of the bulk screening constant, κ . The evaluation is carried out for equal sized particles with radii
a equal to 1 × 10−6 m. The surface-to-surface separation is chosen to be 1 × 10−11 m for the
purpose of demonstrating numerical stability.

(This figure is in colour only in the electronic version)

distance the electric field is due only to the potential carried by the single particle. The surface
potential for Pi in isolation is Vi = (σi/εκ)

(
1/(coth κai + 1)

)
with the electric field given

by [∂ψ(r, cosβ)/∂r]|r=a1 = −V1
(
κ + 1/a1

)
, where surface charge is linearly proportional to

κ , an effect opposite to that of a uniform dielectric with relative permittivity ε [29]. In the
absence of a screening solvent equation (7) reduces to the expected Q1∞ = 4πa1εV1 when
the total charge is defined as Q1∞ = ∫

σ1 dS1.
In a second calculation we integrate the effect of the known charge distribution using

equation (5) to obtain the screened Coulomb force. In figure 3 the screened Coulomb force
between particles carrying surface potentials −1 � V1/V2 � 1/2 is plotted as a function of
separation distance, d . The most important feature is that the screened Coulomb between
dissimilar particles of the same sign is everywhere repulsive and monotonic with respect to
separation distance but not with respect to potential difference, V1/V2 �= 1. The effect of
curvature on charge distribution is regulated by particle size, a, and by the solvent through the
screening constant, κ . These results demonstrate the importance of the electrical properties of
both the surface and solvent, especially in the near-field.

From a mathematical standpoint, the most important feature of equation (6) is that the
problem of large values of κa in the exponential term, large differences between particle radii
and surface potentials are overcome by first casting the expression for charge by way of the
Fredholm integral equation, and then integrating the effect of the charge distribution to obtain
the electrostatic force. Specifically, the problem of evaluating the coefficients in the expression
for potential, when expanded in terms of the modified Bessel functions, has been bypassed by
this method [30, 31].
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Figure 3. Screened Coulomb force between two charged particles as a function of the surface
potential ratio, V1/V2, and surface-to-surface separation distance. The evaluation is carried out for
equal sized particles with radii a equal to 1 × 10−6 m, bulk screening constant κ = 1 × 108 m−1

and surface potential ratios in the range −1 � V1/V2 � 1/2 for V1 = 1 V in steps of 0.2 V.

4. Conclusions

We report on a mean-field model for the interaction between near electro-neutral and semi-
permeable membranes mediated by a screening solvent. The solution is obtained by casting
the expression for the charge density distribution in the form of the Fredholm integral equation
that is rapidly convergent. From an analytical standpoint most important is that the expression
for pair-interaction force can be used for particles of arbitrary size, surface potential and
bulk screening constant, thus advancing the analytical capability to include pair-interactions
between very dissimilar particles.

Appendix A

Let V1 and V2 be the surface potentials (V) for P1 and P2 taken as relative to ground:

V1 = K

∫
dQ1

e−κR1

R1
+ K

∫
dQ2

e−κR2

R2

V2 = K

∫
dQ1

e−κR′
1

R′
1

+ K

∫
dQ2

e−κR′
2

R′
2

(A.1)

where the length quantities R1, R′
1, R2 and R′

2 are shown in figure 1. Transformation into the
spherical coordinate system then yields
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V1 =K

∫ π

0

∫ 2π

0
a2

1 sin θ1 dθ1 dφ1 σ1(θ1)
e−κ

√
2a2

1−2a2
1 [cosβ cos θ1+sin β sin θ1 cos (φ′−φ1)]√

2a2
1 − 2a2

1[cosβ cos θ1 + sin β sin θ1 cos (φ′ − φ1)]

+K
∫ π

0

∫ 2π

0
a2

2 sin θ2 dθ2 dφ2 σ2(θ2)

× e−κ
√

r2+a2
2−2a2r[cosα cos θ2+sin α sin θ2 cos (φ−φ2)]√

r2 + a2
2 − 2a2r[cosα cos θ2 + sin α sin θ2 cos (φ − φ2)]

(A.2)

where r =
√
a2

1 + h2 − 2a1h cosβ, cosα = (h − a1 cosβ)/
√
a2

1 + h2 − 2a1h cosβ, which
must hold for all values of β when 0 < β < π , and

V2 = K

∫ π

0

∫ 2π

0
a2

1 sin θ1 dθ1 dφ1 σ1(θ1)

× e−κ
√

r ′2+a2
1−2a1r ′[cosβ cos θ1+sin β sin θ1 cos (φ′−φ1)]√

r ′2 + a2
1 − 2a1r ′[cosβ cos θ1 + sin β sin θ1 cos (φ′ − φ1)]

+K
∫ π

0

∫ 2π

0
a2

2 sin θ2 dθ2 dφ2 σ2(θ2)

× e−κ
√

2a2
2−2a2

2 [cosα cos θ2+sin α sin θ2 cos (φ−φ2)]√
2a2

2 − 2a2
2[cosα cos θ2 + sin α sin θ2 cos (φ − φ2)]

(A.3)

where r ′ =
√
a2

2 + h2 − 2a2h cosα, and cosβ = (h−a2 cosα)/
√
a2

2 + h2 − 2a2h cosα, which
must hold for all values of α when 0 < α < π . Equations (A.2) and (A.3) couple the applied
voltages, V1 and V2, to the charge densities, σ1 and σ2, respectively. For a given surface poten-
tial and particle separation distance we note that the magnitude of the surface charge density
is uniquely determined.

The magnitude and location of charges are evaluated by first rewriting equations (A.2)
and (A.3) in a form convenient for numerical evaluation using Gaussian quadrature [32]. From

r =
√
a2

1 + h2 − 2a1h cosβ and cosα = (h− a1 cosβ)/
√
a2

1 + h2 − 2a1h cosβ we obtain

1

κ

∫ 2π

0
dφ2

e−κ

√
r2+a2

2 −2a2r[cosα cos θ2+sin α sin θ2 cos (φ−φ2)]√
r2 + a2

2 − 2a2r[cosα cos θ2 + sin α sin θ2 cos (φ − φ2)]

= 1

κ

∫ 2π

0
dφ2

e−κ

√
h2+a2

1 +a2
2 −a1h cosβ−a2h cos θ2+2a2a1[cosβ cos θ2+sin β sin θ2 cos (φ−φ2)]√

h2 + a2
1 + a2

2 − a1h cosβ − a2h cos θ2 + 2a2a1[cosβ cos θ2 + sin β sin θ2 cos (φ − φ2)]

= 2π
∞∑
m=0

(2m + 1)
Im+1/2(κa2)√

κa2
Pm(cos θ2)

Km+1/2

(
κ

√
a2

1 + h2 − 2a1h cosβ
)

√
κ

√
a2

1 + h2 − 2a1h cosβ

×Pm


 h− a1 cosβ√

a2
1 + h2 − 2a1h cosβ




= 2π
∞∑
m=0

(2m + 1)
Im+1/2(κa1)√

κa1
Pm(cosβ)

Km+1/2

(
κ

√
a2

2 + h2 − 2a2h cos θ2

)
√
κ

√
a2

2 + h2 − 2a2h cos θ2

×Pm


 h− a2 cos θ2√

a2
2 + h2 − 2a2h cos θ2


.
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Charge densities for P1 are

V1

2πκK
=

∞∑
m=0

(2m + 1)
Im+1/2(κa1)√

κa1
Pm(cosβ)

[
Km+1/2(κa1)√

κa1
a2

1

∫ π

0
sin θ dθ σ1(θ)Pm(cos θ)

+ a2
2

∫ π

0
sin θ dθ σ2(θ)

Km+1/2
(
κ

√
a2

2 + h2 − 2a2h cos θ
)

√
κ

√
a2

2 + h2 − 2a2h cos θ

×Pm

(
h− a2 cos θ√

a2
2 + h2 − 2a2h cos θ

)]
(A.4)

and for P2

V2

2πκK
=

∞∑
m=0

(2m + 1)
Im+1/2(κa2)√

κa2
Pm(cosβ)

[
Km+1/2(κa2)√

κa2
a2

2

∫ π

0
sin θ dθ σ2(θ)Pm(cos θ)

+ a2
1

∫ π

0
sin θ dθ σ1(θ)

Km+1/2
(
κ

√
a2

1 + h2 − 2a1h cos θ
)

√
κ

√
a2

1 + h2 − 2a1h cos θ

×Pm

(
h− a1 cos θ√

a2
1 + h2 − 2a1h cos θ

)]
. (A.5)

The above relations further imply that

δm,0
V1

2πκK
= Im+1/2(κa1)√

κa1

[
Km+1/2(κa1)√

κa1
a2

1

∫ π

0
sin θ dθ σ1(θ)Pm(cos θ)

+ a2
2

∫ π

0
sin θ dθ σ2(θ)

Km+1/2
(
κ

√
a2

2 + h2 − 2a2h cos θ
)

√
κ

√
a2

2 + h2 − 2a2h cos θ

×Pm

(
h− a2 cos θ√

a2
2 + h2 − 2a2h cos θ

)]
(A.6)

and

δm,0
V2

2πκK
= Im+1/2(κa2)√

κa2

[
Km+1/2(κa2)√

κa2
a2

2

∫ π

0
sin θ dθ σ2(θ)Pm(cos θ)

+ a2
1

∫ π

0
sin θ dθ σ1(θ)

Km+1/2
(
κ

√
a2

1 + h2 − 2a1h cos θ
)

√
κ

√
a2

1 + h2 − 2a1h cos θ

×Pm

(
h− a1 cos θ√

a2
1 + h2 − 1a1h cos θ

)]
. (A.7)
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Using the method of Gaussian quadratures where
∫ 1
−1 f (x) dx = ∑N

i=1 wif (xi) andxi = cos θi
we can rewrite equations (A.6) and (A.7) to read

δm,0
V1

2πκK
=

N∑
i=1

wi

Im+1/2(κa1)√
κa1

[
Km+1/2(κa1)√

κa1
a2

1σ1(xi)Pm(xi)

+ a2
2σ2(xi)

Km+1/2
(
κ

√
a2

2 + h2 − 2a2hxi
)

√
κ

√
a2

2 + h2 − 2a2hxi

Pm

(
h− a2xi√

a2
2 + h2 − 2a2hxi

)]
(A.8)

δm,0
V2

2πκK
=

N∑
i=1

wi

Im+1/2(κa2)√
κa2

[
Km+1/2(κa2)√

κa2
a2

2 sin θiσ2(xi)Pm(xi)

+ a2
1σ1(xi)

Km+1/2
(
κ

√
a2

1 + h2 − 2a1hxi
)

√
κ

√
a2

1 + h2 − 2a1hxi

Pm

(
h− a1xi√

a2
1 + h2 − 2a1hxi

)]
. (A.9)

The surface charge densities are obtained from equations (A.8) and (A.9) using matrix
inversion.

Appendix B

The electric potential just above a particle of radius r ≡ a+
1 is

ψ(r, cosβ)

2πκK
=

∞∑
m=0

(2m + 1)Pm(cosβ)

[
Im+1/2(κa1)√

κa1

Km+1/2(κr)√
κr

a2
1

∫ π

0
sin θ dθ σ1(θ)Pm(cos θ)

+
Im+1/2(κr)√

κr
a2

2

∫ π

0
sin θ dθ σ2(θ)

Km+1/2
(
κ

√
a2

2 + h2 − 2a2h cos θ
)

√
κ

√
a2

2 + h2 − 2a2h cos θ

×Pm

(
h− a2 cos θ√

a2
2 + h2 − 2a2h cos θ

)]

from which
(
(f )′ = ∂f

∂r

)
∂ψ(r,cosβ)

∂r

2πκK
=

∞∑
m=0

(2m+1)Pm(cosβ)

[
Im+1/2(κa1)√

κa1

(
Km+1/2(κr)√

κr

)′
a2

1

∫ π

0
sin θ dθ σ1(θ)Pm(cos θ)

+

(
Im+1/2(κr)√

κr

)′
a2

2

∫ π

0
sin θ dθ σ2(θ)

Km+1/2
(
κ

√
a2

2 + h2 − 2a2h cos θ
)

√
κ

√
a2

2 + h2 − 2a2h cos θ

×Pm

(
h− a2 cos θ√

a2
2 + h2 − 2a2h cos θ

)]
.

Rewrite the above two equations on the surface of the particle of radius a1 (let r = a1),
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ψ(a1, cosβ)

2πκK
=

∞∑
m=0

(2m+1)Pm(cosβ)

[
Im+1/2(κa1)√

κa1

Km+1/2(κa1)√
κa1

a2
1

∫ π

0
sin θ dθ σ1(θ)Pm(cos θ)

+
Im+1/2(κa1)√

κa1
a2

2

∫ π

0
sin θ dθ σ2(θ)

Km+1/2
(
κ

√
a2

2 + h2 − 2a2h cos θ
)

√
κ

√
a2

2 + h2 − 2a2h cos θ

×Pm

(
h− a2 cos θ√

a2
2 + h2 − 2a2h cos θ

)]
(B.1)

∂ψ(r,cosβ)
∂r

∣∣∣
r=a1

2πκK
=

∞∑
m=0

(2m + 1)Pm(cosβ)

[
Im+1/2(κa1)√

κa1

(
Km+1/2(κa1)√

κa1

)′
a2

1

×
∫ π

0
sin θ dθ σ1(θ)Pm(cos θ) +

(
Im+1/2(κa1)√

κa1

)′
a2

2

×
∫ π

0
sin θ dθ σ2(θ)

Km+1/2
(
κ

√
a2

2 + h2 − 2a2h cos θ
)

√
κ

√
a2

2 + h2 − 2a2h cos θ

×Pm

(
h− a2 cos θ√

a2
2 + h2 − 2a2h cos θ

)]
. (B.2)

Next, multiply equation (B.1) by

{(
Ik+1/2(κa1)/

√
κa1

)′}/{
Ik+1/2(κa1)/

√
κa1

}−1

Pk(cosβ) and integrate from −1 to 1 using the orthonormality relation
∫ 1
−1 Pm(x)Pk(x) dx =

[2/(2k + 1)]δm,k to obtain(
Im+1/2(κa1)√

κa1

)′ ∫ π
0 sin θ dθ Pm(cos θ)ψ(a1,cos θ)

2πκK

Im+1/2(κa1)√
κa1

= 2

[(
Im+1/2(κa1)√

κa1

)′
Km+1/2(κa1)√

κa1
a2

1

×
∫ π

0
sin θ dθ σ1(θ)Pm(cos θ) +

(
Im+1/2(κa1)√

κa1

)′
a2

2

×
∫ π

0
sin θ dθ σ2(θ)

Km+1/2
(
κ

√
a2

2 + h2 − 2a2h cos θ
)

√
κ

√
a2

2 + h2 − 2a2h cos θ

×Pm

(
h− a2 cos θ√

a2
2 + h2 − 2a2h cos θ

)]

and multiply the above equation by [(2m + 1)/2]Pm(cosβ) and sum over the index to obtain

∞∑
m=0

2m + 1

2
Pm(cosβ)

(
Im+1/2(κa1)√

κa1

)′ ∫ π
0 sin θ dθ Pm(cos θ)ψ(r,cos θ)

2πκK

Im+1/2(κa1)√
κa1

=
∞∑
m=0

(2m + 1)Pm(cosβ)

[(
Im+1/2(κa1)√

κa1

)′
Km+1/2(κa1)√

κa1
a2

1
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×
∫ π

0
sin θ dθ σ1(θ)Pm(cos θ) +

(
Im+1/2(κa1)√

κa1

)′
a2

2

×
∫ π

0
sin θ dθ σ2(θ)

Km+1/2
(
κ

√
a2

2 + h2 − 2a2h cos θ
)

√
κ

√
a2

2 + h2 − 2a2h cos θ

×Pm

(
h− a2 cos θ√

a2
2 + h2 − 2a2h cos θ

)]
. (B.3)

Note that the second terms in equations (B.2) and (B.3) are identical; subtract equation (B.2)
from (B.3) to obtain

∞∑
m=0

2m + 1

2
Pm(cosβ)

(
Im+1/2(κa1)√

κa1

)′

Im+1/2(κa1)√
κa1

∫ π

0
sin θ dθPm(cos θ)ψ(a1, cos θ)− ∂ψ(r, cosβ)

∂r

∣∣∣∣
r=a1

=
∞∑
m=0

(2m + 1)Pm(cosβ)a2
1

∫ π

0
sin θ dθ σ1(θ)Pm(cos θ)

×
{(

Im+1/2(κa1)√
κa1

)′
Km+1/2(κa1)√

κa1
− Im+1/2(κa1)√

κa1

(
Km+1/2(κa1)√

κa1

)′}
.

Then, use the Wronskian identity
(
Im+1/2(κa1)/

√
κa1

)′
Km+1/2(κa1)/

√
κa1 − [Im+1/2(κa1)

/
√
κa1]

(
Km+1/2(κa1)/

√
κa1

)′ = 1/κa2
1 to rewrite the above equation

∞∑
m=0

2m + 1

2
Pm(cosβ)

(
Im+1/2(κa1)√

κa1

)′

Im+1/2(κa1)√
κa1

∫ π

0
sin θ dθ Pm(cos θ)ψ(a1, cos θ)

− ∂ψ(r, cosβ)

∂r

∣∣∣∣
r=a1

= 4πKσ1(β)

with ψ constant on the surface ψ(a1, cosβ) = V1:(
I0+1/2(κa1)√

κa1

)′

I0+1/2(κa1)√
κa1

V1 − ∂ψ(r, cosβ)

∂r

∣∣∣∣
r=a1

= 4πKσ1(β)

or
∂ψ(r, cosβ)

∂r

∣∣∣∣
r=a1

= κV1

(
coth (κa1)− 1

κa1

)
− 4πKσ1(β).

A similar procedure will yield the result
∂ψ(r, cosβ)

∂r

∣∣∣∣
r=a2

= κV2

(
coth (κa2)− 1

κa2

)
− 4πKσ2(β).

At infinite separation

V1 = 2πKκ
I0+1/2(κa1)√

κa1

K0+1/2(κa1)√
κa1

a2
12σ1 = 4πKσ1

sinh κa1e−κa1

κ
=4πKσ1

1

κ coth κa1 + κ

∂ψ(r, cosβ)

∂r

∣∣∣∣
r=a1

= −V1

(
κ +

1

a1

)
and

−4πKσ1 = −V1 (κ + κ coth κa1) .
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